青草青草久热精品视频在线观看,91精品国产免费入口,国产欧美亚洲精品,欧洲综合色,欧美日韩一本大道香蕉欧美,久热国产vs视频在线观看,天天色天天做

文武教師招聘網(wǎng)
首頁 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說課稿 教案 考試大綱 教師招聘試題 特崗教師 教師資格考試
杭州教師  廣州教師  長沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁 >> 教案 >> 高中數(shù)學教案 >> 內(nèi)容

高中數(shù)學教案:高一數(shù)學《等差數(shù)列的前n項和》教學設(shè)計方案

時間:2012-12-3 13:14:45 點擊:

教學目標

1.掌握等差數(shù)列前 項和的公式,并能運用公式解決簡單的問題.

(1)了解等差數(shù)列前 項和的定義,了解逆項相加的原理,理解等差數(shù)列前 項和公式推導的過程,記憶公式的兩種形式;

(2)用方程思想認識等差數(shù)列前 項和的公式,利用公式求 ;等差數(shù)列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;

(3)會利用等差數(shù)列通項公式與前 項和的公式研究 的最值.

2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般思路和方法.

3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.

4.通過公式的推導過程,展現(xiàn)數(shù)學中的對稱美;通過有關(guān)內(nèi)容在實際生活中的應用,使學生再一次感受數(shù)學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學地解決問題.

教學建議

(1)知識結(jié)構(gòu)

本節(jié)內(nèi)容是等差數(shù)列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數(shù)列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數(shù)列通項公式組成方程組,共同運用,解決有關(guān)問題.

(2)重點、難點分析

教學重點是等差數(shù)列前 項和公式的推導和應用,難點是公式推導的思路.

推導過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數(shù)列前 項和公式有兩種形式,應根據(jù)條件選擇適當?shù)男问竭M行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現(xiàn)了方程(組)思想.

高斯算法表現(xiàn)了大數(shù)學家的智慧和巧思,對一般學生來說有很大難度,但大多數(shù)學生都聽說過這個故事,所以難點在于一般等差數(shù)列求和的思路上.

(3)教法建議

①本節(jié)內(nèi)容分為兩課時,一節(jié)為公式推導及簡單應用,一節(jié)側(cè)重于通項公式與前 項和公式綜合運用.

②前 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.

③強調(diào)從特殊到一般,再從一般到特殊的思考方法與研究方法.

④補充等差數(shù)列前 項和的最大值、最小值問題.

⑤用梯形面積公式記憶等差數(shù)列前 項和公式.

 等差數(shù)列的前項和公式教學設(shè)計示例

教學目標

1.通過教學使學生理解等差數(shù)列的前 項和公式的推導過程,并能用公式解決簡單的問題.

2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.

教學重點,難點

教學重點是等差數(shù)列的前 項和公式的推導和應用,難點是獲得推導公式的思路.

教學用具

實物投影儀,多媒體軟件,電腦.

教學方法

講授法.

教學過程

一.新課引入

提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設(shè)計見課件展示)

問題就是(板書)“ ”

這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發(fā)現(xiàn)這100個數(shù)可以分為50組,第一個數(shù)與最后一個數(shù)一組,第二個數(shù)與倒數(shù)第二個數(shù)一組,第三個數(shù)與倒數(shù)第三個數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉(zhuǎn)化為乘法運算,迅速準確得到了結(jié)果.

我們希望求一般的等差數(shù)列的和,高斯算法對我們有何啟發(fā)?

二.講解新課

(板書)等差數(shù)列前 項和公式

1.公式推導(板書)

問題(幻燈片):設(shè)等差數(shù)列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數(shù)列求和的指導意義.

思路一:運用基本量思想,將各項用 和 表示,得


,有以下等式

,問題是一共有多少個 ,似乎與 的奇偶有關(guān).這個思路似乎進行不下去了.

思路二:

上面的等式其實就是 ,為回避個數(shù)問題,做一個改寫 , ,兩式左右分別相加,得


,

于是有: .這就是倒序相加法.

思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得 ,于是 .

于是得到了兩個公式(投影片): 和 .

2.公式記憶

用梯形面積公式記憶等差數(shù)列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數(shù)列前 項和的兩個公式.


3.公式的應用

公式中含有四個量,運用方程的思想,知三求一.

例1.求和:(1) ;

(2) (結(jié)果用 表示)

解題的關(guān)鍵是數(shù)清項數(shù),小結(jié)數(shù)項數(shù)的方法.

例2.等差數(shù)列 中前多少項的和是9900?

本題實質(zhì)是反用公式,解一個關(guān)于 的一元二次函數(shù),注意得到的項數(shù) 必須是正整數(shù).

三.小結(jié)

1.推導等差數(shù)列前 項和公式的思路;

2.公式的應用中的數(shù)學思想.

四.板書設(shè)計


 

作者:不詳 來源:網(wǎng)絡(luò)
相關(guān)文章
  • 文武教師招聘網(wǎng)(m.yufengm.com) © 2012 版權(quán)所有 All Rights Reserved.
  • 站長聯(lián)系QQ:799752985 浙ICP備11036874號-1
  • Powered by 文武教師招聘網(wǎng)