教學目標
1.使學生掌握代數式的值的概念,能用具體數值代替代數式中的字母,求出代數式的值;
2.培養(yǎng)學生準確地運算能力,并適當地滲透特殊與一般的辨證關系的思想。
教學建議
1.重點和難點:正確地求出代數式的值。
2.理解代數式的值:
。1)一個代數式的值是由代數式中字母的取值而決定的.所以代數式的值一般不是一個固定的數,它會隨著代數式中字母取值的變化而變化.因此在談代數式的值時,必須指明在什么條件下.如:對于代數式n-2 ;當n=2 時,代數式n-2 的值是0;當n=4 時,代數式n-2 的值是2.
。2)代數式中字母的取值必須確保做到以下兩點:①使代數式有意義,②使它所表示的實際數量有意義,如: 1/(x-1)中
不能取1,因為x=1 時,分母為零,式于1/(x-1) 無意義;如果式子中字母表示長方形的長,那么它必須大于0.3.求代數式的值的一般步驟:
在代數式的值的概念中,實際也指明了求代數式的值的方法.即一是代入,二是計算.求代數式的值時,一要弄清楚運算符號,二要注意運算順序.在計算時,要注意按代數式指明的運算進行.
4。求代數式的值時的注意事項:
。1)代數式中的運算符號和具體數字都不能改變。
。2)字母在代數式中所處的位置必須搞清楚。
。3)如果字母取值是分數時,作乘方運算必須加上小括號,將來學了負數后,字母給出的值是負數也必須加上括號。
5.本節(jié)知識結構:
本小節(jié)從一個應用代數式的實例出發(fā),引出代數式的值的概念,進而通過兩個例題講述求代數式的值的方法.
6.教學建議
。1) 代數式的值是由代數式里的字母所取的值決定的,因此在教學過程中,注意滲透對應的思想,這樣有助于培養(yǎng)學生的函數觀念.
。2) 列代數式是由特殊到一般, 而求代數式的值, 則可以看成由一般到特殊,在教學中,可結合前一小節(jié),適當滲透關于特殊與一般的辨證關系的思想.
教學設計示例
代數式的值(一)
教學目標
1使學生掌握代數式的值的概念,能用具體數值代替代數式中的字母,求出代數式的值;
2培養(yǎng)學生準確地運算能力,并適當地滲透特殊與一般的辨證關系的思想。
教學重點和難點
重點和難點:正確地求出代數式的值
課堂教學過程設計
一、從學生原有的認識結構提出問題
1用代數式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數的平方和;
(3)a與b的和的50%
2用語言敘述代數式2n+10的意義
3對于第2題中的代數式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)
某學校為了開展體育活動,要添置一批排球,每班配2個,學校另外留10個,如果這個學校共有n個班,總共需多少個排球?
若學校有15個班(即n=15),則添置排球總數為多少個?若有20個班呢?
最后,教師根據學生的回答情況,指出:需要添置排球總數,是隨著班數的確定而確定的;當班數n取不同的數值時,代數式2n+10的計算結果也不同,顯然,當n=15時,代數式的值是40;當n=20時,代數式的值是50我們將上面計算的結果40和50,稱為代數式2n+10當n=15和n=20時的值這就是本節(jié)課我們將要學習研究的內容
二、師生共同研究代數式的值的意義
1用數值代替代數式里的字母,按代數式指明的運算,計算后所得的結果,叫做代數式的值
2結合上述例題,提出如下幾個問題:
(1)求代數式2x+10的值,必須給出什么條件?
(2)代數式的值是由什么值的確定而確定的?
當教師引導學生說出:“代數式的值是由代數式里字母的取值的確定而確定的”之后,可用圖示幫助學生加深印象
然后,教師指出:只要代數式里的字母給定一個確定的值,代數式就有唯一確定的值與它對應
(3)求代數式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案(教師板書例題時,應注意格式規(guī)范化)
例1 當x=7,y=4,z=0時,求代數式x(2x-y+3z)的值
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數式中省略乘號,代入后需添上乘號